hyperspy.misc.eds package¶
Submodules¶
hyperspy.misc.eds.utils module¶
-
hyperspy.misc.eds.utils.
electron_range
(element, beam_energy, density='auto', tilt=0)¶ Return the Kanaya-Okayama electron range.
Return the maximum electron range in a pure bulk material.
Parameters: - element (str) – The element symbol, e.g. ‘Al’.
- beam_energy (float) – The energy of the beam in keV.
- density ({float, 'auto'}) – The density of the material in g/cm3. If ‘auto’, the density of the pure element is used.
- tilt (float.) – The tilt of the sample in degrees.
Returns: Return type: Electron range in micrometers.
Examples
>>> # Electron range in pure Copper at 30 kV in micron >>> hs.eds.electron_range('Cu', 30.) 2.8766744984001607
Notes
From Kanaya, K. and S. Okayama (1972). J. Phys. D. Appl. Phys. 5, p43
See also the textbook of Goldstein et al., Plenum publisher, third edition p 72.
-
hyperspy.misc.eds.utils.
get_FWHM_at_Energy
(energy_resolution_MnKa, E)¶ Calculates the FWHM of a peak at energy E.
Parameters: - energy_resolution_MnKa (float) – Energy resolution of Mn Ka in eV
- E (float) – Energy of the peak in keV
Returns: float
Return type: FWHM of the peak in keV
Notes
From the textbook of Goldstein et al., Plenum publisher, third edition p 315
-
hyperspy.misc.eds.utils.
quantification_cliff_lorimer
(intensities, kfactors, mask=None)¶ Quantification using Cliff-Lorimer
Parameters: - intensities (numpy.array) – the intensities for each X-ray lines. The first axis should be the elements axis.
- kfactors (list of float) – The list of kfactor in same order as intensities eg. kfactors = [1, 1.47, 1.72] for [‘Al_Ka’,’Cr_Ka’, ‘Ni_Ka’]
- mask (array of bool) – The mask with the dimension of intensities[0]. If a pixel is True, the composition is set to zero.
Returns: - numpy.array containing the weight fraction with the same
- shape as intensities.
-
hyperspy.misc.eds.utils.
take_off_angle
(tilt_stage, azimuth_angle, elevation_angle)¶ Calculate the take-off-angle (TOA).
TOA is the angle with which the X-rays leave the surface towards the detector.
Parameters: - tilt_stage (float) – The tilt of the stage in degrees. The sample is facing the detector when positively tilted.
- azimuth_angle (float) – The azimuth of the detector in degrees. 0 is perpendicular to the tilt axis.
- elevation_angle (float) – The elevation of the detector in degrees.
Returns: take_off_angle – In degrees.
Return type: float.
Examples
>>> hs.eds.take_off_angle(tilt_stage=10., >>> azimuth_angle=45., elevation_angle=22.) 28.865971201155283
Notes
Defined by M. Schaffer et al., Ultramicroscopy 107(8), pp 587-597 (2007)
-
hyperspy.misc.eds.utils.
xray_range
(xray_line, beam_energy, density='auto')¶ Return the Anderson-Hasler X-ray range.
Return the maximum range of X-ray generation in a pure bulk material.
Parameters: - xray_line (str) – The X-ray line, e.g. ‘Al_Ka’
- beam_energy (float) – The energy of the beam in kV.
- density ({float, 'auto'}) – The density of the material in g/cm3. If ‘auto’, the density of the pure element is used.
Returns: Return type: X-ray range in micrometer.
Examples
>>> # X-ray range of Cu Ka in pure Copper at 30 kV in micron >>> hs.eds.xray_range('Cu_Ka', 30.) 1.9361716759499248
>>> # X-ray range of Cu Ka in pure Carbon at 30kV in micron >>> hs.eds.xray_range('Cu_Ka', 30., hs.material.elements.C. >>> Physical_properties.density_gcm3) 7.6418811280855454
Notes
From Anderson, C.A. and M.F. Hasler (1966). In proceedings of the 4th international conference on X-ray optics and microanalysis.
See also the textbook of Goldstein et al., Plenum publisher, third edition p 286