hyperspy._components.scalable_fixed_pattern module

class hyperspy._components.scalable_fixed_pattern.ScalableFixedPattern(signal1D, yscale=1.0, xscale=1.0, shift=0.0, interpolate=True)

Bases: hyperspy.component.Component

Fixed pattern component with interpolation support.

f(x) = a \cdot s \left(b \cdot x - x_0\right) + c

Variable

Parameter

a

yscale

b

xscale

x_0

shift

The fixed pattern is defined by a single spectrum which must be provided to the ScalableFixedPattern constructor, e.g.:

In [1]: s = load('my_spectrum.hspy')
In [2]: my_fixed_pattern = components.ScalableFixedPattern(s))
Parameters
  • yscale (Float) –

  • xscale (Float) –

  • shift (Float) –

  • interpolate (Bool) – If False no interpolation is performed and only a y-scaled spectrum is returned.

prepare_interpolator : method to fine tune the interpolation
function(x)
grad_yscale(x)
gui(display=True, toolkit=None, **kwargs)

Display or return interactive GUI element if available.

Parameters
  • display (bool) – If True, display the user interface widgets. If False, return the widgets container in a dictionary, usually for customisation or testing.

  • toolkit (str, iterable of strings or None) – If None (default), all available widgets are displayed or returned. If string, only the widgets of the selected toolkit are displayed if available. If an interable of toolkit strings, the widgets of all listed toolkits are displayed or returned.

prepare_interpolator(kind='linear', fill_value=0, **kwargs)

Prepare interpolation.

Parameters
  • x (array) – The spectral axis of the fixed pattern

  • kind (str or int, optional) – Specifies the kind of interpolation as a string (‘linear’, ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic, ‘cubic’) or as an integer specifying the order of the spline interpolator to use. Default is ‘linear’.

  • fill_value (float, optional) – If provided, then this value will be used to fill in for requested points outside of the data range. If not provided, then the default is NaN.

Notes

Any extra keyword argument is passed to scipy.interpolate.interp1d