hyperspy.external.astroML.histtools module¶
Tools for working with distributions
- 
class hyperspy.external.astroML.histtools.KnuthF(data)¶
- Bases: - object- Class which implements the function minimized by knuth_bin_width - Parameters
- data (array-like, one dimension) – data to be histogrammed 
 - Notes - the function F is given by  - where  is the Gamma function, is the Gamma function, is the number of
data points, is the number of
data points, is the number of measurements in bin is the number of measurements in bin . .- See also - knuth_bin_width,- astroML.plotting.hist- 
bins(M)¶
- Return the bin edges given a width dx 
 
- 
hyperspy.external.astroML.histtools.dasky_freedman_bin_width(data, return_bins=True)¶
- Dask version of freedman_bin_width - Parameters
- data (dask array) – the data 
- return_bins (bool (optional)) – if True, then return the bin edges 
 
- Returns
- width (float) – optimal bin width using Scott’s rule 
- bins (ndarray) – bin edges: returned if return_bins is True 
 
 - Notes - The optimal bin width is  - where  is the is the percent quartile of the data, and percent quartile of the data, and is the number of data points. is the number of data points.
- 
hyperspy.external.astroML.histtools.dasky_histogram(a, bins=10, **kwargs)¶
- Enhanced histogram for dask arrays. The range keyword is ignored. Reads the data at most two times - once to determine best bins (if required), and second time to actually calculate the histogram. - Parameters
- Returns
- hist (array) – The values of the histogram. See normed and weights for a description of the possible semantics. 
- bin_edges (array of dtype float) – Return the bin edges - (length(hist)+1).
 
 - See also 
- 
hyperspy.external.astroML.histtools.dasky_scotts_bin_width(data, return_bins=True)¶
- Dask version of scotts_bin_width - Parameters
- data (dask array) – the data 
- return_bins (bool (optional)) – if True, then return the bin edges 
 
- Returns
- width (float) – optimal bin width using Scott’s rule 
- bins (ndarray) – bin edges: returned if return_bins is True 
 
 - Notes - The optimal bin width is:  - where  is the standard deviation of the data, and is the standard deviation of the data, and is the number of data points. is the number of data points.
- 
hyperspy.external.astroML.histtools.freedman_bin_width(data, return_bins=False)¶
- Return the optimal histogram bin width using the Freedman-Diaconis rule - Parameters
- data (array-like, ndim=1) – observed (one-dimensional) data 
- return_bins (bool (optional)) – if True, then return the bin edges 
 
- Returns
- width (float) – optimal bin width using Scott’s rule 
- bins (ndarray) – bin edges: returned if return_bins is True 
 
 - Notes - The optimal bin width is  - where  is the is the percent quartile of the data, and percent quartile of the data, and is the number of data points. is the number of data points.
- 
hyperspy.external.astroML.histtools.histogram(a, bins=10, range=None, **kwargs)¶
- Enhanced histogram - This is a histogram function that enables the use of more sophisticated algorithms for determining bins. Aside from the bins argument allowing a string specified how bins are computed, the parameters are the same as numpy.histogram(). - Parameters
- a (array_like) – array of data to be histogrammed 
- bins (int or list or str (optional)) – If bins is a string, then it must be one of: ‘blocks’ : use bayesian blocks for dynamic bin widths ‘knuth’ : use Knuth’s rule to determine bins ‘scotts’ : use Scott’s rule to determine bins ‘freedman’ : use the Freedman-diaconis rule to determine bins 
- range (tuple or None (optional)) – the minimum and maximum range for the histogram. If not specified, it will be (x.min(), x.max()) 
- keyword arguments are described in numpy.hist() (other) – 
 
- Returns
- hist (array) – The values of the histogram. See normed and weights for a description of the possible semantics. 
- bin_edges (array of dtype float) – Return the bin edges - (length(hist)+1).
 
 - See also 
- 
hyperspy.external.astroML.histtools.knuth_bin_width(data, return_bins=False)¶
- Return the optimal histogram bin width using Knuth’s rule 1 - Parameters
- data (array-like, ndim=1) – observed (one-dimensional) data 
- return_bins (bool (optional)) – if True, then return the bin edges 
 
- Returns
- dx (float) – optimal bin width. Bins are measured starting at the first data point. 
- bins (ndarray) – bin edges: returned if return_bins is True 
 
 - Notes - The optimal number of bins is the value M which maximizes the function  - where  is the Gamma function, is the Gamma function, is the number of
data points, is the number of
data points, is the number of measurements in bin is the number of measurements in bin . .- References - 1
- Knuth, K.H. “Optimal Data-Based Binning for Histograms”. arXiv:0605197, 2006 
 - See also 
- 
hyperspy.external.astroML.histtools.scotts_bin_width(data, return_bins=False)¶
- Return the optimal histogram bin width using Scott’s rule: - Parameters
- data (array-like, ndim=1) – observed (one-dimensional) data 
- return_bins (bool (optional)) – if True, then return the bin edges 
 
- Returns
- width (float) – optimal bin width using Scott’s rule 
- bins (ndarray) – bin edges: returned if return_bins is True 
 
 - Notes - The optimal bin width is  - where  is the standard deviation of the data, and is the standard deviation of the data, and is the number of data points. is the number of data points.