hyperspy.learn.svd_pca module¶
-
hyperspy.learn.svd_pca.
svd_pca
(data, fast=False, output_dimension=None, centre=None, auto_transpose=True)¶ Perform PCA using SVD.
- Parameters
data (numpy array) – MxN array of input data (M variables, N trials)
fast (bool) – Wheter to use randomized svd estimation to estimate a limited number of componentes given by output_dimension
output_dimension (int) – Number of components to estimate when fast is True
centre (None | 'variables' | 'trials') – If None no centring is applied. If ‘variable’ the centring will be performed in the variable axis. If ‘trials’, the centring will be performed in the ‘trials’ axis.
auto_transpose (bool) – If True, automatically transposes the data to boost performance
- Returns
factors (numpy array)
loadings (numpy array)
explained_variance (numpy array)
mean (numpy array or None (if center is None))