hyperspy.misc.utils module¶
-
class
hyperspy.misc.utils.
DictionaryTreeBrowser
(dictionary=None, double_lines=False)¶ Bases:
object
A class to comfortably browse a dictionary using a CLI.
In addition to accessing the values using dictionary syntax the class enables navigating a dictionary that constains nested dictionaries as attribures of nested classes. Also it is an iterator over the (key, value) items. The __repr__ method provides pretty tree printing. Private keys, i.e. keys that starts with an underscore, are not printed, counted when calling len nor iterated.
-
export : saves the dictionary in pretty tree printing format in a text
file.
-
keys : returns a list of non-private keys.
-
as_dictionary : returns a dictionary representation of the object.
-
set_item : easily set items, creating any necessary node on the way.
-
add_node : adds a node.
Examples
>>> tree = DictionaryTreeBrowser() >>> tree.set_item("Branch.Leaf1.color", "green") >>> tree.set_item("Branch.Leaf2.color", "brown") >>> tree.set_item("Branch.Leaf2.caterpillar", True) >>> tree.set_item("Branch.Leaf1.caterpillar", False) >>> tree └── Branch ├── Leaf1 │ ├── caterpillar = False │ └── color = green └── Leaf2 ├── caterpillar = True └── color = brown >>> tree.Branch ├── Leaf1 │ ├── caterpillar = False │ └── color = green └── Leaf2 ├── caterpillar = True └── color = brown >>> for label, leaf in tree.Branch: ... print("%s is %s" % (label, leaf.color)) Leaf1 is green Leaf2 is brown >>> tree.Branch.Leaf2.caterpillar True >>> "Leaf1" in tree.Branch True >>> "Leaf3" in tree.Branch False >>>
-
add_dictionary
(dictionary, double_lines=False)¶ Add new items from dictionary.
-
add_node
(node_path)¶ Adds all the nodes in the given path if they don’t exist.
- Parameters
node_path (str) – The nodes must be separated by full stops (periods).
Examples
>>> dict_browser = DictionaryTreeBrowser({}) >>> dict_browser.add_node('First.Second') >>> dict_browser.First.Second = 3 >>> dict_browser └── First └── Second = 3
-
as_dictionary
()¶ Returns its dictionary representation.
-
copy
()¶
-
deepcopy
()¶
-
export
(filename, encoding='utf8')¶ Export the dictionary to a text file
- Parameters
filename (str) – The name of the file without the extension that is txt by default
encoding (valid encoding str) –
-
get_item
(item_path, default=None)¶ Given a path, return it’s value if it exists, or default value if missing.
The nodes of the path are separated using periods.
- Parameters
item_path (Str) – A string describing the path with each item separated by full stops (periods)
default – The value to return if the path does not exist.
Examples
>>> dict = {'To' : {'be' : True}} >>> dict_browser = DictionaryTreeBrowser(dict) >>> dict_browser.has_item('To') True >>> dict_browser.has_item('To.be') True >>> dict_browser.has_item('To.be.or') False
-
has_item
(item_path)¶ Given a path, return True if it exists.
The nodes of the path are separated using periods.
- Parameters
item_path (Str) – A string describing the path with each item separated by full stops (periods)
Examples
>>> dict = {'To' : {'be' : True}} >>> dict_browser = DictionaryTreeBrowser(dict) >>> dict_browser.has_item('To') True >>> dict_browser.has_item('To.be') True >>> dict_browser.has_item('To.be.or') False
-
keys
()¶ Returns a list of non-private keys.
-
set_item
(item_path, value)¶ Given the path and value, create the missing nodes in the path and assign to the last one the value
- Parameters
item_path (Str) – A string describing the path with each item separated by a full stops (periods)
Examples
>>> dict_browser = DictionaryTreeBrowser({}) >>> dict_browser.set_item('First.Second.Third', 3) >>> dict_browser └── First └── Second └── Third = 3
-
-
hyperspy.misc.utils.
add_scalar_axis
(signal)¶
-
hyperspy.misc.utils.
attrsetter
(target, attrs, value)¶ Sets attribute of the target to specified value, supports nested attributes. Only creates a new attribute if the object supports such behaviour (e.g. DictionaryTreeBrowser does)
- Parameters
Example
First create a signal and model pair:
>>> s = hs.signals.Signal1D(np.arange(10)) >>> m = s.create_model() >>> m.signal.data array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
Now set the data of the model with attrsetter >>> attrsetter(m, ‘signal1D.data’, np.arange(10)+2) >>> self.signal.data array([2, 3, 4, 5, 6, 7, 8, 9, 10, 10])
The behaviour is identical to >>> self.signal.data = np.arange(10) + 2
-
hyperspy.misc.utils.
closest_power_of_two
(n)¶
-
hyperspy.misc.utils.
create_map_objects
(function, nav_size, iterating_kwargs, **kwargs)¶ To be used in _map_iterate of BaseSignal and LazySignal.
Moved to a separate method to reduce code duplication.
-
hyperspy.misc.utils.
deprecation_warning
(msg)¶
-
hyperspy.misc.utils.
dummy_context_manager
(*args, **kwargs)¶
-
hyperspy.misc.utils.
ensure_unicode
(stuff, encoding='utf8', encoding2='latin-1')¶
-
hyperspy.misc.utils.
find_subclasses
(mod, cls)¶ Find all the subclasses in a module.
- Parameters
mod (module) –
cls (class) –
- Returns
- Return type
dictonary in which key, item = subclass name, subclass
-
hyperspy.misc.utils.
fsdict
(nodes, value, dictionary)¶ Populates the dictionary ‘dic’ in a file system-like fashion creating a dictionary of dictionaries from the items present in the list ‘nodes’ and assigning the value ‘value’ to the innermost dictionary.
‘dic’ will be of the type: dic[‘node1’][‘node2’][‘node3’]…[‘nodeN’] = value where each node is like a directory that contains other directories (nodes) or files (values)
-
hyperspy.misc.utils.
generate_axis
(origin, step, N, index=0)¶ Creates an axis given the origin, step and number of channels
Alternatively, the index of the origin channel can be specified.
-
hyperspy.misc.utils.
get_object_package_info
(obj)¶ Get info about object package
- Returns
dic – Dictionary containing
package
andpackage_version
(if available)- Return type
-
hyperspy.misc.utils.
isiterable
(obj)¶
-
hyperspy.misc.utils.
iterable_not_string
(thing)¶
-
hyperspy.misc.utils.
map_result_construction
(signal, inplace, result, ragged, sig_shape=None, lazy=False)¶
-
hyperspy.misc.utils.
multiply
(iterable)¶ Return product of sequence of numbers.
Equivalent of functools.reduce(operator.mul, iterable, 1).
>>> product([2**8, 2**30]) 274877906944 >>> product([]) 1
-
hyperspy.misc.utils.
ordinal
(value)¶ Converts zero or a postive integer (or their string representations) to an ordinal value.
>>> for i in range(1,13): ... ordinal(i) ... '1st' '2nd' '3rd' '4th' '5th' '6th' '7th' '8th' '9th' '10th' '11th' '12th'
>>> for i in (100, '111', '112',1011): ... ordinal(i) ... '100th' '111th' '112th' '1011th'
Notes
Author: Serdar Tumgoren http://code.activestate.com/recipes/576888-format-a-number-as-an-ordinal/ MIT license
-
hyperspy.misc.utils.
print_html
(f_text, f_html)¶ Print html version when in Jupyter Notebook
-
hyperspy.misc.utils.
rollelem
(a, index, to_index=0)¶ Roll the specified axis backwards, until it lies in a given position.
- Parameters
- Returns
res – Output list.
- Return type
-
hyperspy.misc.utils.
shorten_name
(name, req_l)¶
-
hyperspy.misc.utils.
signal_range_from_roi
(signal_range)¶
-
hyperspy.misc.utils.
slugify
(value, valid_variable_name=False)¶ Normalizes string, converts to lowercase, removes non-alpha characters, and converts spaces to hyphens.
Adapted from Django’s “django/template/defaultfilters.py”.
-
hyperspy.misc.utils.
stack
(signal_list, axis=None, new_axis_name='stack_element', lazy=None, **kwargs)¶ Concatenate the signals in the list over a given axis or a new axis.
The title is set to that of the first signal in the list.
- Parameters
signal_list (list of BaseSignal instances) –
axis ({None, int, str}) – If None, the signals are stacked over a new axis. The data must have the same dimensions. Otherwise the signals are stacked over the axis given by its integer index or its name. The data must have the same shape, except in the dimension corresponding to axis.
new_axis_name (string) – The name of the new axis when axis is None. If an axis with this name already exists it automatically append ‘-i’, where i are integers, until it finds a name that is not yet in use.
lazy ({bool, None}) – Returns a LazySignal if True. If None, only returns lazy rezult if at least one is lazy.
- Returns
signal – signal list)
- Return type
BaseSignal instance (or subclass, determined by the objects in
Examples
>>> data = np.arange(20) >>> s = hs.stack([hs.signals.Signal1D(data[:10]), ... hs.signals.Signal1D(data[10:])]) >>> s <Signal1D, title: Stack of , dimensions: (2, 10)> >>> s.data array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]])
-
hyperspy.misc.utils.
stash_active_state
(model)¶
-
hyperspy.misc.utils.
str2num
(string, **kargs)¶ Transform a a table in string form into a numpy array
- Parameters
string (string) –
- Returns
- Return type
numpy array
-
hyperspy.misc.utils.
strlist2enumeration
(lst)¶
-
hyperspy.misc.utils.
swapelem
(obj, i, j)¶ Swaps element having index i with element having index j in object obj IN PLACE.
E.g. >>> L = [‘a’, ‘b’, ‘c’] >>> spwapelem(L, 1, 2) >>> print(L)
[‘a’, ‘c’, ‘b’]
-
hyperspy.misc.utils.
transpose
(*args, signal_axes=None, navigation_axes=None, optimize=False)¶ Transposes all passed signals according to the specified options.
For parameters see
BaseSignal.transpose
.Examples
>>> signal_iterable = [hs.signals.BaseSignal(np.random.random((2,)*(i+1))) for i in range(3)] >>> signal_iterable [<BaseSignal, title: , dimensions: (|2)>, <BaseSignal, title: , dimensions: (|2, 2)>, <BaseSignal, title: , dimensions: (|2, 2, 2)>] >>> hs.transpose(*signal_iterable, signal_axes=1) [<BaseSignal, title: , dimensions: (|2)>, <BaseSignal, title: , dimensions: (2|2)>, <BaseSignal, title: , dimensions: (2, 2|2)>] >>> hs.transpose(signal1, signal2, signal3, signal_axes=["Energy"])
-
hyperspy.misc.utils.
underline
(line, character='-')¶ Return the line underlined.