.. _model-label:

Model fitting
*************

HyperSpy can perform curve fitting of one-dimensional signals (spectra) and
two-dimensional signals (images) in `n`-dimensional data sets.
Models are defined by adding individual functions (components in HyperSpy's
terminology) to a :py:class:`~.model.BaseModel` instance. Those individual
components are then summed to create the final model function that can be
fitted to the data, by adjusting the free parameters of the individual
components.


Models can be created and fit to experimental data in both one and two
dimensions i.e. spectra and images respectively. Most of the syntax is
identical in either case. A one-dimensional model is created when a model
is created for a :py:class:`~._signals.signal1d.Signal1D` whereas a two-
dimensional model is created for a :py:class:`~._signals.signal2d.Signal2D`.

.. note::

    Plotting and analytical gradient-based fitting methods are not yet
    implemented for the :py:class:`~.models.model2d.Model2D` class.


Caveats
-------

* Before creating a model verify that the
  :py:attr:`~.signal.BaseSignal.axes_manager.signal_axes[0].is_binned` attribute
  of the signal axis is set to the correct value because the resulting
  model depends on this parameter. See :ref:`signal.binned` for more details.
* When importing data that has been binned using other software, in
  particular Gatan's DM, the stored values may be the averages of the
  binned channels or pixels, instead of their sum, as would be required
  for proper statistical analysis. We therefore cannot guarantee that
  the statistics will be valid, and so strongly recommend that all
  pre-fitting binning is performed using Hyperspy.

Creating a model
----------------

A :py:class:`~.models.model1d.Model1D` can be created for data in the
:py:class:`~._signals.signal1d.Signal1D` class using the
:py:meth:`~._signals.signal1d.Signal1D.create_model` method:

.. code-block:: python

    >>> s = hs.signals.Signal1D(np.arange(300).reshape(30, 10))
    >>> m = s.create_model() # Creates the 1D-Model and assign it to m

Similarly, a :py:class:`~.models.model2d.Model2D` can be created for data
in the :py:class:`~._signals.signal2d.Signal2D` class using the
:py:meth:`~._signals.signal2d.Signal2D.create_model` method:

.. code-block:: python

    >>> im = hs.signals.Signal2D(np.arange(300).reshape(3, 10, 10))
    >>> mod = im.create_model() # Create the 2D-Model and assign it to mod

The syntax for creating both one-dimensional and two-dimensional models is thus
identical for the user in practice. When a model is created  you may be
prompted to provide important information not already included in the
datafile, `e.g.` if ``s`` is EELS data, you may be asked for the accelerating
voltage, convergence and collection semi-angles etc.


Model components
----------------

In HyperSpy a model consists of a sum of individual components. For convenience,
HyperSpy provides a number of pre-defined model components as well as mechanisms
to create your own components.

.. _model_components-label:

Pre-defined model components
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Various components are available in one (:py:mod:`~.components1d`) and
two-dimensions (:py:mod:`~.components2d`) to construct a
model.

The following general components are currently available for one-dimensional models:

* :py:class:`~._components.arctan.Arctan`
* :py:class:`~._components.bleasdale.Bleasdale`
* :py:class:`~._components.doniach.Doniach`
* :py:class:`~._components.error_function.Erf`
* :py:class:`~._components.exponential.Exponential`
* :py:class:`~._components.expression.Expression`
* :py:class:`~._components.gaussian.Gaussian`
* :py:class:`~._components.gaussianhf.GaussianHF`
* :py:class:`~._components.heaviside.HeavisideStep`
* :py:class:`~._components.logistic.Logistic`
* :py:class:`~._components.lorentzian.Lorentzian`
* :py:class:`~._components.offset.Offset`
* :py:class:`~._components.polynomial.Polynomial`
* :py:class:`~._components.power_law.PowerLaw`
* :py:class:`~._components.pes_see.SEE`
* :py:class:`~._components.scalable_fixed_pattern.ScalableFixedPattern`
* :py:class:`~._components.skew_normal.SkewNormal`
* :py:class:`~._components.voigt.Voigt`
* :py:class:`~._components.split_voigt.SplitVoigt`
* :py:class:`~._components.volume_plasmon_drude.VolumePlasmonDrude`

The following components developed with specific signal types in mind are
currently available for one-dimensional models:

* :py:class:`~._components.eels_arctan.EELSArctan`
* :py:class:`~._components.eels_double_power_law.DoublePowerLaw`
* :py:class:`~._components.eels_cl_edge.EELSCLEdge`
* :py:class:`~._components.pes_core_line_shape.PESCoreLineShape`
* :py:class:`~._components.pes_voigt.PESVoigt`
* :py:class:`~._components.pes_see.SEE`
* :py:class:`~._components.eels_vignetting.Vignetting`

The following components are currently available for two-dimensional models:

* :py:class:`~._components.expression.Expression`
* :py:class:`~._components.gaussian2d.Gaussian2D`

However, this doesn't mean that you have to limit yourself to this meagre
list of functions. As discussed below, it is very easy to turn a
mathematical, fixed-pattern or Python function into a component.

.. _expression_component-label:

Define components from a mathematical expression
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^


The easiest way to turn a mathematical expression into a component is using the
:py:class:`~._components.expression.Expression` component. For example, the
following is all you need to create a
:py:class:`~._components.gaussian.Gaussian` component  with more sensible
parameters for spectroscopy than the one that ships with HyperSpy:

.. code-block:: python

    >>> g = hs.model.components1D.Expression(
    ... expression="height * exp(-(x - x0) ** 2 * 4 * log(2)/ fwhm ** 2)",
    ... name="Gaussian",
    ... position="x0",
    ... height=1,
    ... fwhm=1,
    ... x0=0,
    ... module="numpy")

If the expression is inconvenient to write out in full (e.g. it's long and/or
complicated), multiple substitutions can be given, separated by semicolons.
Both symbolic and numerical substitutions are allowed:

.. code-block:: python

    >>> expression = "h / sqrt(p2) ; p2 = 2 * m0 * e1 * x * brackets;"
    >>> expression += "brackets = 1 + (e1 * x) / (2 * m0 * c * c) ;"
    >>> expression += "m0 = 9.1e-31 ; c = 3e8; e1 = 1.6e-19 ; h = 6.6e-34"
    >>> wavelength = hs.model.components1D.Expression(
    ... expression=expression,
    ... name="Electron wavelength with voltage")

:py:class:`~._components.expression.Expression` uses `Sympy
<https://www.sympy.org>`_ internally to turn the string into
a function. By default it "translates" the expression using
numpy, but often it is possible to boost performance by using
`numexpr <https://github.com/pydata/numexpr>`_ instead.

It can also create 2D components with optional rotation. In the following
example we create a 2D Gaussian that rotates around its center:

.. code-block:: python

    >>> g = hs.model.components2D.Expression(
    ... "k * exp(-((x-x0)**2 / (2 * sx ** 2) + (y-y0)**2 / (2 * sy ** 2)))",
    ... "Gaussian2d", add_rotation=True, position=("x0", "y0"),
    ... module="numpy", )

Define new components from a Python function
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Of course :py:class:`~._components.expression.Expression` is only useful for
analytical functions. You can define more general components modifying the
following template to suit your needs:


.. code-block:: python

    from hyperspy.component import Component

    class MyComponent(Component):

        """
        """

        def __init__(self, parameter_1=1, parameter_2=2):
            # Define the parameters
            Component.__init__(self, ('parameter_1', 'parameter_2'))

            # Optionally we can set the initial values
            self.parameter_1.value = parameter_1
            self.parameter_2.value = parameter_2

            # The units (optional)
            self.parameter_1.units = 'Tesla'
            self.parameter_2.units = 'Kociak'

            # Once defined we can give default values to the attribute
            # For example we fix the attribure_1 (optional)
            self.parameter_1.attribute_1.free = False

            # And we set the boundaries (optional)
            self.parameter_1.bmin = 0.
            self.parameter_1.bmax = None

            # Optionally, to boost the optimization speed we can also define
            # the gradients of the function we the syntax:
            # self.parameter.grad = function
            self.parameter_1.grad = self.grad_parameter_1
            self.parameter_2.grad = self.grad_parameter_2

        # Define the function as a function of the already defined parameters,
        # x being the independent variable value
        def function(self, x):
            p1 = self.parameter_1.value
            p2 = self.parameter_2.value
            return p1 + x * p2

        # Optionally define the gradients of each parameter
        def grad_parameter_1(self, x):
            """
            Returns d(function)/d(parameter_1)
            """
            return 0

        def grad_parameter_2(self, x):
            """
            Returns d(function)/d(parameter_2)
            """
            return x

Define components from a fixed-pattern
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The :py:class:`~._components.scalable_fixed_pattern.ScalableFixedPattern`
component enables fitting a pattern (in the form of a
:py:class:`~._signals.signal1d.Signal1D` instance) to data by shifting
(:py:attr:`~._components.scalable_fixed_pattern.ScalableFixedPattern.shift`)
and
scaling it in the x and y directions using the
:py:attr:`~._components.scalable_fixed_pattern.ScalableFixedPattern.xscale`
and
:py:attr:`~._components.scalable_fixed_pattern.ScalableFixedPattern.yscale`
parameters respectively.

Adding components to the model
------------------------------

To print the current components in a model use
:py:attr:`~.model.BaseModel.components`. A table with component number,
attribute name, component name and component type will be printed:

.. code-block:: python

    >>> m
    <Model, title: my signal title>
    >>> m.components # an empty model
       # |       Attribute Name |       Component Name |        Component Type
    ---- | -------------------- | -------------------- | ---------------------


.. note:: Sometimes components may be created automatically. For example, if
   the :py:class:`~._signals.signal1d.Signal1D` is recognised as EELS data, a
   power-law background component may automatically be added to the model.
   Therefore, the table above may not all may empty on model creation.

To add a component to the model, first we have to create an instance of the
component.
Once the instance has been created we can add the component to the model
using the :py:meth:`~.model.BaseModel.append` and
:py:meth:`~.model.BaseModel.extend` methods for one or more components
respectively.

As an example, let's add several :py:class:`~._components.gaussian.Gaussian`
components to the model:

.. code-block:: python

    >>> gaussian = hs.model.components1D.Gaussian() # Create a Gaussian comp.
    >>> m.append(gaussian) # Add it to the model
    >>> m.components # Print the model components
       # |       Attribute Name |        Component Name |        Component Type
    ---- | -------------------- | --------------------- | ---------------------
       0 |             Gaussian |              Gaussian |              Gaussian
    >>> gaussian2 = hs.model.components1D.Gaussian() # Create another gaussian
    >>> gaussian3 = hs.model.components1D.Gaussian() # Create a third gaussian


We could use the :py:meth:`~.model.BaseModel.append` method twice to add the
two Gaussians, but when adding multiple components it is handier to use the
extend method that enables adding a list of components at once.


.. code-block:: python

    >>> m.extend((gaussian2, gaussian3)) # note the double parentheses!
    >>> m.components
       # |       Attribute Name |      Component Name |        Component Type
    ---- | -------------------- | ------------------- | ---------------------
       0 |             Gaussian |            Gaussian |              Gaussian
       1 |           Gaussian_0 |          Gaussian_0 |              Gaussian
       2 |           Gaussian_1 |          Gaussian_1 |              Gaussian


We can customise the name of the components.

.. code-block:: python

    >>> gaussian.name = 'Carbon'
    >>> gaussian2.name = 'Long Hydrogen name'
    >>> gaussian3.name = 'Nitrogen'
    >>> m.components
       # |        Attribute Name |        Component Name |      Component Type
    ---- | --------------------- | --------------------- | -------------------
       0 |                Carbon |                Carbon |            Gaussian
       1 |    Long_Hydrogen_name |    Long Hydrogen name |            Gaussian
       2 |              Nitrogen |              Nitrogen |            Gaussian


Notice that two components cannot have the same name:

.. code-block:: python

    >>> gaussian2.name = 'Carbon'
    Traceback (most recent call last):
      File "<ipython-input-5-2b5669fae54a>", line 1, in <module>
        g2.name = "Carbon"
      File "/home/fjd29/Python/hyperspy/hyperspy/component.py", line 466, in
        name "the name " + str(value))
    ValueError: Another component already has the name Carbon


It is possible to access the components in the model by their name or by the
index in the model.

.. code-block:: python

    >>> m
       # |        Attribute Name |       Component Name |      Component Type
    ---- | --------------------- | -------------------- | -------------------
       0 |                Carbon |               Carbon |            Gaussian
       1 |    Long_Hydrogen_name |   Long Hydrogen name |            Gaussian
       2 |              Nitrogen |             Nitrogen |            Gaussian
    >>> m[0]
    <Carbon (Gaussian component)>
    >>> m["Long Hydrogen name"]
    <Long Hydrogen name (Gaussian component)>


In addition, the components can be accessed in the
:py:attr:`~.model.BaseModel.components` `Model` attribute. This is specially
useful when working in interactive data analysis with IPython because it
enables tab completion.

.. code-block:: python

    >>> m
       # |        Attribute Name |        Component Name |      Component Type
    ---- | --------------------- | --------------------- | -------------------
       0 |                Carbon |                Carbon |            Gaussian
       1 |    Long_Hydrogen_name |    Long Hydrogen name |            Gaussian
       2 |              Nitrogen |              Nitrogen |            Gaussian
    >>> m.components.Long_Hydrogen_name
    <Long Hydrogen name (Gaussian component)>


It is possible to "switch off" a component by setting its
``active`` attribute to ``False``. When a component is
switched off, to all effects it is as if it was not part of the model. To
switch it back on simply set the ``active`` attribute back to ``True``.

In multi-dimensional signals it is possible to store the value of the
``active`` attribute at each navigation index.
To enable this feature for a given component set the
:py:attr:`~.component.Component.active_is_multidimensional` attribute to
`True`.

.. code-block:: python

    >>> s = hs.signals.Signal1D(np.arange(100).reshape(10,10))
    >>> m = s.create_model()
    >>> g1 = hs.model.components1D.Gaussian()
    >>> g2 = hs.model.components1D.Gaussian()
    >>> m.extend([g1,g2])
    >>> g1.active_is_multidimensional = True
    >>> g1._active_array
    array([ True,  True,  True,  True,  True,  True,  True,  True,  True,  True], dtype=bool)
    >>> g2._active_array is None
    True
    >>> m.set_component_active_value(False)
    >>> g1._active_array
    array([False, False, False, False, False, False, False, False, False, False], dtype=bool)
    >>> m.set_component_active_value(True, only_current=True)
    >>> g1._active_array
    array([ True, False, False, False, False, False, False, False, False, False], dtype=bool)
    >>> g1.active_is_multidimensional = False
    >>> g1._active_array is None
    True


.. _model_indexing-label:

Indexing the model
------------------

Often it is useful to consider only part of the model - for example at
a particular location (i.e. a slice in the navigation space) or energy range
(i.e. a slice in the signal space). This can be done using exactly the same
syntax that we use for signal indexing (:ref:`signal.indexing`).
:py:attr:`~.model.BaseModel.red_chisq` and :py:attr:`~.model.BaseModel.dof`
are automatically recomputed for the resulting slices.

.. code-block:: python

    >>> s = hs.signals.Signal1D(np.arange(100).reshape(10,10))
    >>> m = s.create_model()
    >>> m.append(hs.model.components1D.Gaussian())
    >>> # select first three navigation pixels and last five signal channels
    >>> m1 = m.inav[:3].isig[-5:]
    >>> m1.signal
    <Signal1D, title: , dimensions: (3|5)>


Getting and setting parameter values and attributes
---------------------------------------------------

:py:meth:`~.model.BaseModel.print_current_values()` prints the properties of the
parameters of the components in the current coordinates. In the Jupyter Notebook,
the default view is HTML-formatted, which allows for formatted copying
into other software, such as Excel. This can be changed to a standard
terminal view with the argument ``fancy=False``. One can also filter for only active
components and only showing component with free parameters with the arguments
``only_active`` and ``only_free``, respectively.

.. _Component.print_current_values:

The current values of a particular component can be printed using the
:py:attr:`~.component.Component.print_current_values()` method.

.. code-block:: python

    >>> m = s.create_model()
    >>> m.fit()
    >>> G = m[1]
    >>> G.print_current_values(fancy=False)
    Gaussian: Al_Ka
    Active: True
    Parameter Name |  Free |      Value |        Std |        Min
    ============== | ===== | ========== | ========== | ==========
                 A |  True | 62894.6824 | 1039.40944 |        0.0
             sigma | False | 0.03253440 |       None |       None
            centre | False |     1.4865 |       None |       None

The current coordinates can be either set by navigating the
:py:meth:`~.model.BaseModel.plot`, or specified by pixel indices in
``m.axes_manager.indices`` or as calibrated coordinates in
``m.axes_manager.coordinates``.

:py:attr:`~.component.Component.parameters` contains a list of the parameters
of a component and :py:attr:`~.component.Component.free_parameters` lists only
the free parameters.

The value of a particular parameter in the current coordinates can be
accessed by :py:attr:`component.Parameter.value` (e.g. ``Gaussian.A.value``).
To access an array of the value of the parameter across all navigation
pixels, :py:attr:`component.Parameter.map['values']` (e.g.
``Gaussian.A.map["values"]``) can be used. On its own,
:py:attr:`component.Parameter.map` returns a NumPy array with three elements:
``'values'``, ``'std'`` and ``'is_set'``. The first two give the value and
standard error for each index. The last element shows whether the value has
been set in a given index, either by a fitting procedure or manually.

If a model contains several components with the same parameters, it is possible
to change them all by using :py:meth:`~.model.BaseModel.set_parameters_value`.
Example:

.. code-block:: python

    >>> s = hs.signals.Signal1D(np.arange(100).reshape(10,10))
    >>> m = s.create_model()
    >>> g1 = hs.model.components1D.Gaussian()
    >>> g2 = hs.model.components1D.Gaussian()
    >>> m.extend([g1,g2])
    >>> m.set_parameters_value('A', 20)
    >>> g1.A.map['values']
    array([ 20.,  20.,  20.,  20.,  20.,  20.,  20.,  20.,  20.,  20.])
    >>> g2.A.map['values']
    array([ 20.,  20.,  20.,  20.,  20.,  20.,  20.,  20.,  20.,  20.])
    >>> m.set_parameters_value('A', 40, only_current=True)
    >>> g1.A.map['values']
    array([ 40.,  20.,  20.,  20.,  20.,  20.,  20.,  20.,  20.,  20.])
    >>> m.set_parameters_value('A',30, component_list=[g2])
    >>> g2.A.map['values']
    array([ 30.,  30.,  30.,  30.,  30.,  30.,  30.,  30.,  30.,  30.])
    >>> g1.A.map['values']
    array([ 40.,  20.,  20.,  20.,  20.,  20.,  20.,  20.,  20.,  20.])


To set the ``free`` state of a parameter change the
:py:attr:`~.component.Parameter.free` attribute. To change the ``free`` state
of all parameters in a component to `True` use
:py:meth:`~.component.Component.set_parameters_free`, and
:py:meth:`~.component.Component.set_parameters_not_free` for setting them to
``False``. Specific parameter-names can also be specified by using
``parameter_name_list``, shown in the example:

.. code-block:: python

    >>> g = hs.model.components1D.Gaussian()
    >>> g.free_parameters
    [<Parameter A of Gaussian component>,
    <Parameter sigma of Gaussian component>,
    <Parameter centre of Gaussian component>]
    >>> g.set_parameters_not_free()
    >>> g.set_parameters_free(parameter_name_list=['A','centre'])
    >>> g.free_parameters
    [<Parameter A of Gaussian component>,
    <Parameter centre of Gaussian component>]

Similar functions exist for :py:class:`~.model.BaseModel`:
:py:meth:`~.model.BaseModel.set_parameters_free` and
:py:meth:`~.model.BaseModel.set_parameters_not_free`. Which sets the
``free`` states for the parameters in components in a model. Specific
components and parameter-names can also be specified. For example:

.. code-block:: python

    >>> g1 = hs.model.components1D.Gaussian()
    >>> g2 = hs.model.components1D.Gaussian()
    >>> m.extend([g1,g2])
    >>> m.set_parameters_not_free()
    >>> g1.free_parameters
    []
    >>> g2.free_parameters
    []
    >>> m.set_parameters_free(parameter_name_list=['A'])
    >>> g1.free_parameters
    [<Parameter A of Gaussian component>]
    >>> g2.free_parameters
    [<Parameter A of Gaussian component>]
    >>> m.set_parameters_free([g1], parameter_name_list=['sigma'])
    >>> g1.free_parameters
    [<Parameter A of Gaussian component>,
         <Parameter sigma of Gaussian component>]
    >>> g2.free_parameters
    [<Parameter A of Gaussian component>]


The value of a parameter can be coupled to the value of another by setting the
:py:attr:`~.component.Parameter.twin` attribute:

.. code-block:: python

    >>> gaussian.parameters # Print the parameters of the Gaussian components
    (<Parameter A of Carbon component>,
    <Parameter sigma of Carbon component>,
    <Parameter centre of Carbon component>)
    >>> gaussian.centre.free = False # Fix the centre
    >>> gaussian.free_parameters  # Print the free parameters
    [<Parameter A of Carbon component>, <Parameter sigma of Carbon component>]
    >>> m.print_current_values(only_free=True, fancy=False) # Print the values of all free parameters.
    Model1D:
    Gaussian: Carbon
    Active: True
    Parameter Name |  Free |      Value |        Std |        Min |        Max
    ============== | ===== | ========== | ========== | ========== | ==========
                 A |  True |        1.0 |       None |        0.0 |       None
             sigma |  True |        1.0 |       None |       None |       None

    Gaussian: Long Hydrogen name
    Active: True
    Parameter Name |  Free |      Value |        Std |        Min |        Max
    ============== | ===== | ========== | ========== | ========== | ==========
                 A |  True |        1.0 |       None |        0.0 |       None
             sigma |  True |        1.0 |       None |       None |       None
            centre |  True |        0.0 |       None |       None |       None

    Gaussian: Nitrogen
    Active: True
    Parameter Name |  Free |      Value |        Std |        Min |        Max
    ============== | ===== | ========== | ========== | ========== | ==========
                 A |  True |        1.0 |       None |        0.0 |       None
             sigma |  True |        1.0 |       None |       None |       None
            centre |  True |        0.0 |       None |       None |       None

    >>> # Couple the A parameter of gaussian2 to the A parameter of gaussian 3:
    >>> gaussian2.A.twin = gaussian3.A
    >>> gaussian2.A.value = 10 # Set the gaussian2 A value to 10
    >>> gaussian3.print_current_values(fancy=False)
    Gaussian: Nitrogen
    Active: True
    Parameter Name |  Free |      Value |        Std |        Min |        Max
    ============== | ===== | ========== | ========== | ========== | ==========
                 A |  True |       10.0 |       None |        0.0 |       None
             sigma |  True |        1.0 |       None |       None |       None
            centre |  True |        0.0 |       None |       None |       None

    >>> gaussian3.A.value = 5 # Set the gaussian1 centre value to 5
    >>> gaussian2.print_current_values(fancy=False)
    Gaussian: Long Hydrogen name
    Active: True
    Parameter Name |  Free |      Value |        Std |        Min |        Max
    ============== | ===== | ========== | ========== | ========== | ==========
                 A | False |        5.0 |       None |        0.0 |       None
             sigma |  True |        1.0 |       None |       None |       None
            centre |  True |        0.0 |       None |       None |       None

.. deprecated:: 1.2.0
    Setting the :py:attr:`~.component.Parameter.twin_function` and
    :py:attr:`~.component.Parameter.twin_inverse_function` attributes. Set the
    :py:attr:`~.component.Parameter.twin_function_expr` and
    :py:attr:`~.component.Parameter.twin_inverse_function_expr` attributes
    instead.

.. versionadded:: 1.2.0
    :py:attr:`~.component.Parameter.twin_function_expr` and
    :py:attr:`~.component.Parameter.twin_inverse_function_expr`.

By default the coupling function is the identity function. However it is
possible to set a different coupling function by setting the
:py:attr:`~.component.Parameter.twin_function_expr` and
:py:attr:`~.component.Parameter.twin_inverse_function_expr` attributes.  For
example:

.. code-block:: python

    >>> gaussian2.A.twin_function_expr = "x**2"
    >>> gaussian2.A.twin_inverse_function_expr = "sqrt(abs(x))"
    >>> gaussian2.A.value = 4
    >>> gaussian3.print_current_values(fancy=False)
    Gaussian: Nitrogen
    Active: True
    Parameter Name |  Free |      Value |        Std |        Min |        Max
    ============== | ===== | ========== | ========== | ========== | ==========
                 A |  True |        2.0 |       None |        0.0 |       None
             sigma |  True |        1.0 |       None |       None |       None
            centre |  True |        0.0 |       None |       None |       None

.. code-block:: python

    >>> gaussian3.A.value = 4
    >>> gaussian2.print_current_values(fancy=False)
    Gaussian: Long Hydrogen name
    Active: True
    Parameter Name |  Free |      Value |        Std |        Min |        Max
    ============== | ===== | ========== | ========== | ========== | ==========
                 A | False |       16.0 |       None |        0.0 |       None
             sigma |  True |        1.0 |       None |       None |       None
            centre |  True |        0.0 |       None |       None |       None

.. _model.fitting:

Fitting the model to the data
-----------------------------

To fit the model to the data at the current coordinates (e.g. to fit one
spectrum at a particular point in a spectrum-image), use
:py:meth:`~.model.BaseModel.fit`. HyperSpy implements a number of
different optimization approaches, each of which can have particular
benefits and/or drawbacks depending on your specific application.
A good approach to choosing an optimization approach is to ask yourself
the question "Do you want to...":

* Apply bounds to your model parameter values?
* Use gradient-based fitting algorithms to accelerate your fit?
* Estimate the standard deviations of the parameter values found by the fit?
* Fit your data in the least-squares sense, or use another loss function?
* Find the global optima for your parameters, or is a local optima acceptable?

Optimization algorithms
^^^^^^^^^^^^^^^^^^^^^^^

The following table summarizes the features of some of the optimizers
currently available in HyperSpy, including whether they support parameter
bounds, gradients and parameter error estimation. The "Type" column indicates
whether the optimizers find a local or global optima.

.. _optimizers-table:

.. table:: Features of supported curve-fitting optimizers.

    +-----------------------------------+----------+-----------+----------+---------------+--------+--------+
    | Optimizer                         | Bounds   | Gradients | Errors   | Loss function | Type   | Linear |
    +===================================+==========+===========+==========+===============+========+========+
    | ``"lm"`` (default)                |  Yes     | Yes       | Yes      | Only ``"ls"`` | local  | No     |
    +-----------------------------------+----------+-----------+----------+---------------+--------+--------+
    | ``"trf"``                         |  Yes     | Yes       | Yes      | Only ``"ls"`` | local  | No     |
    +-----------------------------------+----------+-----------+----------+---------------+--------+--------+
    | ``"dogbox"``                      |  Yes     | Yes       | Yes      | Only ``"ls"`` | local  | No     |
    +-----------------------------------+----------+-----------+----------+---------------+--------+--------+
    | ``"odr"``                         |  No      | Yes       | Yes      | Only ``"ls"`` | local  | No     |
    +-----------------------------------+----------+-----------+----------+---------------+--------+--------+
    | ``"lstsq"``                       |  No      | No        | Yes [1]_ | Only ``"ls"`` | global | Yes    |
    +-----------------------------------+----------+-----------+----------+---------------+--------+--------+
    | ``"ridge_regression"``            |  No      | No        | Yes [1]_ | Only ``"ls"`` | global | Yes    |
    +-----------------------------------+----------+-----------+----------+---------------+--------+--------+
    | :py:func:`scipy.optimize.minimize`| Yes [2]_ | Yes [2]_  | No       | All           | local  | No     |
    +-----------------------------------+----------+-----------+----------+---------------+--------+--------+
    | ``"Differential Evolution"``      |  Yes     | No        | No       | All           | global | No     |
    +-----------------------------------+----------+-----------+----------+---------------+--------+--------+
    | ``"Dual Annealing"`` [3]_         |  Yes     | No        | No       | All           | global | No     |
    +-----------------------------------+----------+-----------+----------+---------------+--------+--------+
    | ``"SHGO"`` [3]_                   |  Yes     | No        | No       | All           | global | No     |
    +-----------------------------------+----------+-----------+----------+---------------+--------+--------+

.. rubric:: Footnotes

.. [1] Requires the :py:meth:`~hyperspy.model.BaseModel.multifit` ``calculate_errors = True`` argument
       in most cases. See the documentation below on :ref:`linear least square fitting <linear_fitting-label>`
       for more info.

.. [2] **All** of the fitting algorithms available in :py:func:`scipy.optimize.minimize` are currently
       supported by HyperSpy; however, only some of them support bounds and/or gradients. For more information,
       please see the `SciPy documentation <https://docs.scipy.org/doc/scipy/reference/optimize.html>`_.

.. [3] Requires ``scipy >= 1.2.0``.



The default optimizer in HyperSpy is ``"lm"``, which stands for the `Levenberg-Marquardt
algorithm <https://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm>`_. In
earlier versions of HyperSpy (< 1.6) this was known as ``"leastsq"``.

Loss functions
^^^^^^^^^^^^^^

HyperSpy supports a number of loss functions. The default is ``"ls"``,
i.e. the least-squares loss. For the vast majority of cases, this loss
function is appropriate, and has the additional benefit of supporting
parameter error estimation and :ref:`goodness-of-fit <model.goodness_of_fit>`
testing. However, if your data contains very low counts per pixel, or
is corrupted by outliers, the ``"ML-poisson"`` and ``"huber"`` loss
functions may be worth investigating.

Least squares with error estimation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The following example shows how to perfom least squares optimization with
error estimation. First we create data consisting of a line
``y = a*x + b`` with ``a = 1`` and ``b = 100``, and we then add Gaussian
noise to it:

.. code-block:: python

    >>> s = hs.signals.Signal1D(np.arange(100, 300))
    >>> s.add_gaussian_noise(std=100)

To fit it, we create a model consisting of a
:class:`~._components.polynomial.Polynomial` component of order 1 and fit it
to the data.

.. code-block:: python

    >>> m = s.create_model()
    >>> line = hs.model.components1D.Polynomial(order=1)
    >>> m.append(line)
    >>> m.fit()

Once the fit is complete, the optimized value of the parameters and their
estimated standard deviation are stored in the following line attributes:

.. code-block:: python

    >>> line.a.value
    0.9924615648843765
    >>> line.b.value
    103.67507406125888
    >>> line.a.std
    0.11771053738516088
    >>> line.b.std
    13.541061301257537

.. warning::

    When the noise is heteroscedastic, only if the
    ``metadata.Signal.Noise_properties.variance`` attribute of the
    :class:`~._signals.signal1d.Signal1D` instance is defined can
    the parameter standard deviations be estimated accurately.

    If the variance is not defined, the standard deviations are still
    computed, by setting variance equal to 1. However, this calculation
    will not be correct unless an accurate value of the variance is
    provided. See :ref:`signal.noise_properties` for more information.

.. _weighted_least_squares-label:

Weighted least squares with error estimation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

In the following example, we add Poisson noise to the data instead of
Gaussian noise, and proceed to fit as in the previous example.

.. code-block:: python

    >>> s = hs.signals.Signal1D(np.arange(300))
    >>> s.add_poissonian_noise()
    >>> m = s.create_model()
    >>> line  = hs.model.components1D.Polynomial(order=1)
    >>> m.append(line)
    >>> m.fit()
    >>> line.coefficients.value
    (1.0052331707848698, -1.0723588390873573)
    >>> line.coefficients.std
    (0.0081710549764721901, 1.4117294994070277)

Because the noise is heteroscedastic, the least squares optimizer estimation is
biased. A more accurate result can be obtained with weighted least squares,
where the weights are proportional to the inverse of the noise variance.
Although this is still biased for Poisson noise, it is a good approximation
in most cases where there are a sufficient number of counts per pixel.

.. code-block:: python

   >>> exp_val = hs.signals.Signal1D(np.arange(300))
   >>> s.estimate_poissonian_noise_variance(expected_value=exp_val)
   >>> m.fit()
   >>> line.coefficients.value
   (1.0004224896604759, -0.46982916592391377)
   >>> line.coefficients.std
   (0.0055752036447948173, 0.46950832982673557)

.. warning::

    When the attribute ``metadata.Signal.Noise_properties.variance``
    is defined, the behaviour is to perform a weighted least-squares
    fit using the inverse of the noise variance as the weights.
    In this scenario, to then disable weighting, you will need to **unset**
    the attribute. You can achieve this with
    :meth:`~.signal.BaseSignal.set_noise_variance`:

    .. code-block:: python

        >>> m.signal.set_noise_variance(None)
        >>> m.fit()  # This will now be an unweighted fit
        >>> line.coefficients.value
        (1.0052331707848698, -1.0723588390873573)

Poisson maximum likelihood estimation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

To avoid biased estimation in the case of data corrupted by Poisson noise
with very few counts, we can use Poisson maximum likelihood estimation (MLE) instead.
This is an unbiased estimator for Poisson noise. To perform MLE, we must
use a general, non-linear optimizer from the :ref:`table above <optimizers-table>`,
such as Nelder-Mead or L-BFGS-B:

.. code-block:: python

   >>> m.fit(optimizer="Nelder-Mead", loss_function="ML-poisson")
   >>> line.coefficients.value
   (1.0030718094185611, -0.63590210946134107)

Estimation of the parameter errors is not currently supported for Poisson
maximum likelihood estimation.

Huber loss function
~~~~~~~~~~~~~~~~~~~

HyperSpy also implements the
`Huber loss <https://en.wikipedia.org/wiki/Huber_loss>`_ function,
which is typically less sensitive to outliers in the data compared
to the least-squares loss. Again, we need to use one of the general
non-linear optimization algorithms:

.. code-block:: python

   >>> m.fit(optimizer="Nelder-Mead", loss_function="huber")

Estimation of the parameter errors is not currently supported
for the Huber loss function.

Custom loss functions
~~~~~~~~~~~~~~~~~~~~~

As well as the built-in loss functions described above,
a custom loss function can be passed to the model:

.. code-block:: python

    >>> def my_custom_function(model, values, data, weights=None):
    ...    """
    ...    Parameters
    ...    ----------
    ...    model : Model instance
    ...        the model that is fitted.
    ...    values : np.ndarray
    ...        A one-dimensional array with free parameter values suggested by the
    ...        optimizer (that are not yet stored in the model).
    ...    data : np.ndarray
    ...        A one-dimensional array with current data that is being fitted.
    ...    weights : {np.ndarray, None}
    ...        An optional one-dimensional array with parameter weights.
    ...
    ...    Returns
    ...    -------
    ...    score : float
    ...        A signle float value, representing a score of the fit, with
    ...        lower values corresponding to better fits.
    ...    """
    ...    # Almost any operation can be performed, for example:
    ...    # First we store the suggested values in the model
    ...    model.fetch_values_from_array(values)
    ...
    ...    # Evaluate the current model
    ...    cur_value = model(onlyactive=True)
    ...
    ...    # Calculate the weighted difference with data
    ...    if weights is None:
    ...        weights = 1
    ...    difference = (data - cur_value) * weights
    ...
    ...    # Return squared and summed weighted difference
    ...    return (difference**2).sum()

    >>> # We must use a general non-linear optimizer
    >>> m.fit(optimizer='Nelder-Mead', loss_function=my_custom_function)

If the optimizer requires an analytical gradient function, it can be similarly
passed, using the following signature:

.. code-block:: python

    >>> def my_custom_gradient_function(model, values, data, weights=None):
    ...    """
    ...    Parameters
    ...    ----------
    ...    model : Model instance
    ...        the model that is fitted.
    ...    values : np.ndarray
    ...        A one-dimensional array with free parameter values suggested by the
    ...        optimizer (that are not yet stored in the model).
    ...    data : np.ndarray
    ...        A one-dimensional array with current data that is being fitted.
    ...    weights : {np.ndarray, None}
    ...        An optional one-dimensional array with parameter weights.
    ...
    ...    Returns
    ...    -------
    ...    gradients : np.ndarray
    ...        a one-dimensional array of gradients, the size of `values`,
    ...        containing each parameter gradient with the given values
    ...    """
    ...    # As an example, estimate maximum likelihood gradient:
    ...    model.fetch_values_from_array(values)
    ...    cur_value = model(onlyactive=True)
    ...
    ...    # We use in-built jacobian estimation
    ...    jac = model._jacobian(values, data)
    ...
    ...    return -(jac * (data / cur_value - 1)).sum(1)

    >>> # We must use a general non-linear optimizer again
    >>> m.fit(optimizer='L-BFGS-B',
    ...       loss_function=my_custom_function,
    ...       grad=my_custom_gradient_function)

Using gradient information
^^^^^^^^^^^^^^^^^^^^^^^^^^

.. versionadded:: 1.6 ``grad="analytical"`` and ``grad="fd"`` keyword arguments

Optimization algorithms that take into account the gradient of
the loss function will often out-perform so-called "derivative-free"
optimization algorithms in terms of how rapidly they converge to a
solution. HyperSpy can use analytical gradients for model-fitting,
as well as numerical estimates of the gradient based on finite differences.

If all the components in the model support analytical gradients,
you can pass ``grad="analytical"`` in order to use this information
when fitting. The results are typically more accurate than an
estimated gradient, and the optimization often runs faster since
fewer function evaluations are required to calculate the gradient.

Following the above examples:

.. code-block:: python

    >>> m = s.create_model()
    >>> line = hs.model.components1D.Polynomial(order=1)
    >>> m.append(line)

    >>> # Use a 2-point finite-difference scheme to estimate the gradient
    >>> m.fit(grad="fd", fd_scheme="2-point")

    >>> # Use the analytical gradient
    >>> m.fit(grad="analytical")

    >>> # Huber loss and Poisson MLE functions
    >>> # also support analytical gradients
    >>> m.fit(grad="analytical", loss_function="huber")
    >>> m.fit(grad="analytical", loss_function="ML-poisson")

.. note::

    Analytical gradients are not yet implemented for the
    :py:class:`~.models.model2d.Model2D` class.

Bounded optimization
^^^^^^^^^^^^^^^^^^^^

Non-linear optimization can sometimes fail to converge to a good optimum,
especially if poor starting values are provided. Problems of ill-conditioning
and non-convergence can be improved by using bounded optimization.

All components' parameters have the attributes ``parameter.bmin`` and
``parameter.bmax`` ("bounded min" and "bounded max"). When fitting using the
``bounded=True`` argument by ``m.fit(bounded=True)`` or ``m.multifit(bounded=True)``,
these attributes set the minimum and maximum values allowed for ``parameter.value``.

Currently, not all optimizers support bounds - see the
:ref:`table above <optimizers-table>`. In the following example, a Gaussian
histogram is fitted using a :class:`~._components.gaussian.Gaussian`
component using the Levenberg-Marquardt ("lm") optimizer and bounds
on the ``centre`` parameter.

.. code-block:: python

    >>> s = hs.signals.BaseSignal(np.random.normal(loc=10, scale=0.01,
    ... size=100000)).get_histogram()
    >>> s.axes_manager[-1].is_binned = True
    >>> m = s.create_model()
    >>> g1 = hs.model.components1D.Gaussian()
    >>> m.append(g1)
    >>> g1.centre.value = 7
    >>> g1.centre.bmin = 7
    >>> g1.centre.bmax = 14
    >>> m.fit(optimizer="lm", bounded=True)
    >>> m.print_current_values(fancy=False)
    Model1D:  histogram
    Gaussian: Gaussian
    Active: True
    Parameter Name |  Free |      Value |        Std |        Min |        Max
    ============== | ===== | ========== | ========== | ========== | ==========
                 A |  True | 99997.3481 | 232.333693 |        0.0 |       None
             sigma |  True | 0.00999184 | 2.68064163 |       None |       None
            centre |  True | 9.99980788 | 2.68064070 |        7.0 |       14.0

.. _linear_fitting-label:

Linear least squares
^^^^^^^^^^^^^^^^^^^^

.. versionadded:: 1.7

Linear fitting can be used to address some of the drawbacks of non-linear optimization:

- it doesn't suffer from the *starting parameters* issue, which can sometimes be problematic
  with nonlinear fitting. Since linear fitting uses linear algebra to find the
  solution (find the parameter values of the model), the solution is a unique solution,
  while nonlinear optimization uses an iterative approach and therefore relies
  on the initial values of the parameters.
- it is fast, because i) in favorable situations, the signal can be fitted in a vectorized
  fashion, i.e. the signal is fitted in a single run instead of iterating over
  the navigation dimension; ii) it is not iterative, `i.e.` it does the
  calculation only one time instead of 10-100 iterations, depending on how
  quickly the non-linear optimizer will converge.

However, linear fitting can *only* fit linear models and will not be able to fit
parameters which vary *non-linearly*.

A component is considered linear when its free parameters scale the component only
in the y-axis. For the exemplary function ``y = a*x**b``, ``a`` is a linear parameter, whilst ``b``
is not. If ``b.free = False``, then the component is linear.
Components can also be made up of several linear parts. For instance,
the 2D-polynomial ``y = a*x**2+b*y**2+c*x+d*y+e`` is entirely linear.

.. note::

    After creating a model with values for the nonlinear parameters, a quick way to set
    all nonlinear parameters to be ``free = False`` is to use ``m.set_parameters_not_free(only_nonlinear=True)``

To check if a parameter is linear, use the model or component method
:py:meth:`~hyperspy.model.BaseModel.print_current_values()`. For a component to be
considered linear, it can hold only one free parameter, and that parameter
must be linear.

If all components in a model are linear, then a linear optimizer can be used to
solve the problem as a linear regression problem! This can be done using two approaches:

- the standard pixel-by-pixel approach as used by the *nonlinear* optimizers
- fit the entire dataset in one *vectorised* operation, which will be much faster (up to 1000 times).
  However, there is a caveat: all fixed parameters must have the same value across the dataset in
  order to avoid creating a very large array whose size will scale with the number of different
  values of the non-free parameters.

.. note::

    A good example of a linear model in the electron-microscopy field is an Energy-Dispersive
    X-ray Spectroscopy (EDS) dataset, which typically consists of a polynomial background and
    Gaussian peaks with well-defined energy (``Gaussian.centre``) and peak widths
    (``Gaussian.sigma``). This dataset can be fit extremely fast with a linear optimizer.

There are two implementations of linear least squares fitting in hyperspy:

- the ``'lstsq'`` optimizer, which uses :py:func:`numpy.linalg.lstsq`, or
  :py:func:`dask.array.linalg.lstsq` for lazy signals.
- the ``'ridge_regression'`` optimizer, which supports regularization
  (see :py:class:`sklearn.linear_model.Ridge` for arguments to pass to
  :py:meth:`~hyperspy.model.BaseModel.fit`), but does not support lazy signals.

As for non-linear least squares fitting, :ref:`weighted least squares <weighted_least_squares-label>`
is supported.

In the following example, we first generate a 300x300 navigation signal of varying total intensity,
and then populate it with an EDS spectrum at each point. The signal can be fitted with a polynomial
background and a Gaussian for each peak. Hyperspy automatically adds these to the model, and fixes
the ``centre`` and ``sigma`` parameters to known values. Fitting this model with a non-linear optimizer
can about half an hour on a decent workstation. With a linear optimizer, it takes seconds.

.. code-block:: python

    >>> nav = hs.signals.Signal2D(np.random.random((300, 300))).T
    >>> s = hs.datasets.example_signals.EDS_SEM_Spectrum() * nav
    >>> m = s.create_model()

    >>> m.multifit(optimizer='lstsq')

Standard errors for the parameters are by default not calculated when the dataset
is fitted in vectorized fashion, because it has large memory requirement.
If errors are required, either pass ``calculate_errors=True`` as an argument
to :py:meth:`~hyperspy.model.BaseModel.multifit`, or rerun
:py:meth:`~hyperspy.model.BaseModel.multifit` with a nonlinear optimizer,
which should run fast since the parameters are already optimized.

None of the linear optimizers currently support bounds.

Optimization results
^^^^^^^^^^^^^^^^^^^^

After fitting the model, details about the optimization
procedure, including whether it finished successfully,
are returned as :py:class:`scipy.optimize.OptimizeResult` object,
according to the keyword argument ``return_info=True``.
These details are often useful for diagnosing problems such
as a poorly-fitted model or a convergence failure.
You can also access the object as the ``fit_output`` attribute:

.. code-block:: python

    >>> m.fit()
    <scipy.optimize.OptimizeResult object>

    >>> type(m.fit_output)
    <scipy.optimize.OptimizeResult object>

You can also print this information using the
``print_info`` keyword argument:

.. code-block:: python

    # Print the info to stdout
    >>> m.fit(optimizer="L-BFGS-B", print_info=True)
    Fit info:
      optimizer=L-BFGS-B
      loss_function=ls
      bounded=False
      grad="fd"
    Fit result:
      hess_inv: <3x3 LbfgsInvHessProduct with dtype=float64>
       message: b'CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH'
          nfev: 168
           nit: 32
          njev: 42
        status: 0
       success: True
             x: array([ 9.97614503e+03, -1.10610734e-01,  1.98380701e+00])


.. _model.goodness_of_fit:

Goodness of fit
^^^^^^^^^^^^^^^

The chi-squared, reduced chi-squared and the degrees of freedom are
computed automatically when fitting a (weighted) least-squares model
(i.e. only when ``loss_function="ls"``). They are stored as signals, in the
:attr:`~.model.BaseModel.chisq`, :attr:`~.model.BaseModel.red_chisq` and
:attr:`~.model.BaseModel.dof` attributes of the model respectively.

.. warning::

    Unless ``metadata.Signal.Noise_properties.variance`` contains
    an accurate estimation of the variance of the data, the chi-squared and
    reduced chi-squared will not be computed correctly. This is true for both
    homocedastic and heteroscedastic noise.

.. _model.visualization:

Visualizing the model
^^^^^^^^^^^^^^^^^^^^^

To visualise the result use the :py:meth:`~.model.BaseModel.plot` method:

.. code-block:: python

    >>> m.plot() # Visualise the results

By default only the full model line is displayed in the plot. In addition, it
is possible to display the individual components by calling
:py:meth:`~.model.BaseModel.enable_plot_components` or directly using
:py:meth:`~.model.BaseModel.plot`:

.. code-block:: python

    >>> m.plot(plot_components=True) # Visualise the results

To disable this feature call
:py:meth:`~.model.BaseModel.disable_plot_components`.

.. versionadded:: 1.4 ``Signal1D.plot`` keyword arguments

All extra keyword argments are passes to the :meth:`plot` method of the
corresponing signal object. For example, the following plots the model signal
figure but not its navigator:

.. code-block:: python

    >>> m.plot(navigator=False)

By default the model plot is automatically updated when any parameter value
changes. It is possible to suspend this feature with
:py:meth:`~.model.BaseModel.suspend_update`.

.. To resume it use :py:meth:`~.model.BaseModel.resume_update`.

.. _model.starting:

Setting the initial parameters
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Non-linear optimization often requires setting sensible starting parameters.
This can be done by plotting the model and adjusting the parameters by hand.

.. versionchanged:: 1.3
    All :meth:`notebook_interaction` methods renamed to :meth:`gui`. The
    :meth:`notebook_interaction` methods will be removed in 2.0

.. _notebook_interaction-label:

If running in a Jupyter Notebook, interactive widgets can be used to
conveniently adjust the parameter values by running
:py:meth:`~.model.BaseModel.gui` for :py:class:`~.model.BaseModel`,
:py:class:`~.component.Component` and
:py:class:`~.component.Parameter`.

.. figure::  images/notebook_widgets.png
    :align:   center
    :width:   985

    Interactive widgets for the full model in a Jupyter notebook. Drag the
    sliders to adjust current parameter values. Typing different minimum and
    maximum values changes the boundaries of the slider.

Also, :py:meth:`~.models.model1d.Model1D.enable_adjust_position` provides an
interactive way of setting the position of the components with a
well-defined position.
:py:meth:`~.models.model1d.Model1D.disable_adjust_position` disables the tool.

.. figure::  images/model_adjust_position.png
    :align:   center
    :width:   500

    Interactive component position adjustment tool. Drag the vertical lines
    to set the initial value of the position parameter.

Exclude data from the fitting process
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The following :py:class:`~.model.BaseModel` methods can be used to exclude
undesired spectral channels from the fitting process:

* :py:meth:`~.models.model1d.Model1D.set_signal_range`
* :py:meth:`~.models.model1d.Model1D.remove_signal_range`
* :py:meth:`~.models.model1d.Model1D.reset_signal_range`

In 2D models, those methods are not implemented and the
``m.channel_switches`` attribute of a model can be set using boolean arrays of the
same shape as the data's signal, where ``True`` means that the datapoint
will be used in the fitting routine.

The example below shows how a boolean array can be easily created from the
signal and how the ``isig`` syntax can be used to define the signal range.

.. code-block:: python

    >>> # Create a sample 2D gaussian dataset
    >>> g = hs.model.components2D.Gaussian2D(
    ...   A=1, centre_x=-5.0, centre_y=-5.0, sigma_x=1.0, sigma_y=2.0,)

    >>> scale = 0.1
    >>> x = np.arange(-10, 10, scale)
    >>> y = np.arange(-10, 10, scale)
    >>> X, Y = np.meshgrid(x, y)

    >>> im = hs.signals.Signal2D(g.function(X, Y))
    >>> im.axes_manager[0].scale = scale
    >>> im.axes_manager[0].offset = -10
    >>> im.axes_manager[1].scale = scale
    >>> im.axes_manager[1].offset = -10

    >>> m = im.create_model() # Model initialisation
    >>> gt = hs.model.components2D.Gaussian2D()
    >>> m.append(gt)

    >>> # Create a boolean signal of the same shape as the signal space of im
    >>> # and with all values set to `False`.
    >>> signal_mask = hs.signals.Signal2D(np.zeros_like(im(), dtype=bool))
    >>> # Specify the signal range using the isig syntax
    >>> signal_mask.isig[-7.:-3.,-9.:-1.] = True

    >>> m.channel_switches = signal_mask.data # Set channel switches
    >>> m.fit()

.. _model.multidimensional-label:

Fitting multidimensional datasets
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

To fit the model to all the elements of a multidimensional dataset, use
:py:meth:`~.model.BaseModel.multifit`:

.. code-block:: python

    >>> m.multifit() # warning: this can be a lengthy process on large datasets

:py:meth:`~.model.BaseModel.multifit` fits the model at the first position,
stores the result of the fit internally and move to the next position until
reaching the end of the dataset.

.. NOTE::

    Sometimes this method can fail, especially in the case of a TEM spectrum
    image of a particle surrounded by vacuum (since in that case the
    top-left pixel will typically be an empty signal).

    To get sensible starting parameters, you can do a single
    :py:meth:`~.model.BaseModel.fit` after changing the active position
    within the spectrum image (either using the plotting GUI or by directly
    modifying ``s.axes_manager.indices`` as in :ref:`Setting_axis_properties`).

    After doing this, you can initialize the model at every pixel to the
    values from the single pixel fit using ``m.assign_current_values_to_all()``,
    and then use :py:meth:`~.model.BaseModel.multifit` to perform the fit over
    the entire spectrum image.

.. versionadded:: 1.6 New optional fitting iteration path `"serpentine"`

Typically, curve fitting on a multidimensional dataset happens in the following
manner: Pixels are fit along the row from the first index in the first row, and once the
last pixel in the row is reached, one proceeds from the first index in the second row.
Since the fitting procedure typically uses the fit of the previous pixel
as the starting point for the next, a common problem with this fitting iteration
path is that the fitting fails going from the end of one row to the beginning of
the next, as the spectrum can change abruptly. This kind of iteration path is
the default in HyperSpy (but will change to ``'serpentine'`` in HyperSpy version
2.0). It can be explicitly set using the :py:meth:`~.model.BaseModel.multifit`
``iterpath='flyback'`` argument.

A simple solution to the flyback fitting problem is to iterate through the
signal indices in a horizontal serpentine pattern, as seen on the image below.
This alternate iteration method can be enabled by the :py:meth:`~.model.BaseModel.multifit`
``iterpath='serpentine'`` argument. The serpentine pattern supports n-dimensional
navigation space, so the first index in the second frame of a three-dimensional
navigation space will be at the last position of the previous frame.

.. figure::  images/FlybackVsSerpentine.png
    :align:   center
    :width:   500

    Comparing the scan patterns generated by the  ``'flyback'`` and ``'serpentine'``
    iterpath options for a 2D navigation space. The pixel intensity and number refers
    to the order that the signal is fitted in.

In addition to ``'serpentine'`` and ``'flyback'``, ``iterpath`` can take as argument any list
or array of indices, or a generator of such, as explained in the :ref:`Iterating AxesManager <iterating_axesmanager>` section.

Sometimes one may like to store and fetch the value of the parameters at a
given position manually. This is possible using
:py:meth:`~.model.BaseModel.store_current_values` and
:py:meth:`~.model.BaseModel.fetch_stored_values`.

Visualising the result of the fit
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The :py:class:`~.model.BaseModel` :py:meth:`~.model.BaseModel.plot_results`,
:py:class:`~.component.Component` :py:meth:`~.component.Component.plot` and
:py:class:`~.component.Parameter` :py:meth:`~.component.Parameter.plot` methods
can be used to visualise the result of the fit **when fitting multidimensional
datasets**.

.. _storing_models-label:

Storing models
--------------

Multiple models can be stored in the same signal. In particular, when
:py:meth:`~.model.BaseModel.store` is called, a full "frozen" copy of the model
is stored in stored in the signal's :py:class:`~.signal.ModelManager`,
which can be accessed in the ``models`` attribute (i.e. ``s.models``)
The stored models can be recreated at any time by calling
:py:meth:`~.signal.ModelManager.restore` with the stored
model name as an argument. To remove a model from storage, simply call
:py:meth:`~.signal.ModelManager.remove`.

The stored models can be either given a name, or assigned one automatically.
The automatic naming follows alphabetical scheme, with the sequence being (a,
b, ..., z, aa, ab, ..., az, ba, ...).

.. NOTE::

    If you want to slice a model, you have to perform the operation on the
    model itself, not its stored version

.. WARNING::

    Modifying a signal in-place (e.g. :py:meth:`~.signal.BaseSignal.map`,
    :py:meth:`~.signal.BaseSignal.crop`,
    :py:meth:`~._signals.signal1d.Signal1D.align1D`,
    :py:meth:`~._signals.signal2d.Signal2D.align2D` and similar)
    will invalidate all stored models. This is done intentionally.

Current stored models can be listed by calling ``s.models``:

.. code-block:: python

    >>> m = s.create_model()
    >>> m.append(hs.model.components1D.Lorentzian())
    >>> m.store('myname')
    >>> s.models
    └── myname
        ├── components
        │   └── Lorentzian
        ├── date = 2015-09-07 12:01:50
        └── dimensions = (|100)

    >>> m.append(hs.model.components1D.Exponential())
    >>> m.store() # assign model name automatically
    >>> s.models
    ├── a
    │   ├── components
    │   │   ├── Exponential
    │   │   └── Lorentzian
    │   ├── date = 2015-09-07 12:01:57
    │   └── dimensions = (|100)
    └── myname
        ├── components
        │   └── Lorentzian
        ├── date = 2015-09-07 12:01:50
        └── dimensions = (|100)
    >>> m1 = s.models.restore('myname')
    >>> m1.components
       # |      Attribute Name |       Component Name |       Component Type
    ---- | ------------------- | -------------------- | --------------------
       0 |          Lorentzian |           Lorentzian |           Lorentzian


Saving and loading the result of the fit
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

To save a model, a convenience function :py:meth:`~.model.BaseModel.save` is
provided, which stores the current model into its signal and saves the
signal. As described in :ref:`storing_models-label`, more than just one
model can be saved with one signal.

.. code-block:: python

    >>> m = s.create_model()
    >>> # analysis and fitting goes here
    >>> m.save('my_filename', 'model_name')
    >>> l = hs.load('my_filename.hspy')
    >>> m = l.models.restore('model_name') # or l.models.model_name.restore()

For older versions of HyperSpy (before 0.9), the instructions were as follows:

    Note that this method is known to be brittle i.e. there is no
    guarantee that a version of HyperSpy different from the one used to save
    the model will be able to load it successfully.  Also, it is
    advisable not to use this method in combination with functions that
    alter the value of the parameters interactively (e.g.
    `enable_adjust_position`) as the modifications made by this functions
    are normally not stored in the IPython notebook or Python script.

    To save a model:

    1. Save the parameter arrays to a file using
       :py:meth:`~.model.BaseModel.save_parameters2file`.

    2. Save all the commands that used to create the model to a file. This
       can be done in the form of an IPython notebook or a Python script.

    3. (Optional) Comment out or delete the fitting commands (e.g.
       :py:meth:`~.model.BaseModel.multifit`).

    To recreate the model:

    1. Execute the IPython notebook or Python script.

    2. Use :py:meth:`~.model.BaseModel.load_parameters_from_file` to load
       back the parameter values and arrays.


Exporting the result of the fit
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The :py:class:`~.model.BaseModel` :py:meth:`~.model.BaseModel.export_results`,
:py:class:`~.component.Component` :py:meth:`~.component.Component.export` and
:py:class:`~.component.Parameter` :py:meth:`~.component.Parameter.export`
methods can be used to export the result of the optimization in all supported
formats.

Batch setting of parameter attributes
-------------------------------------

The following model methods can be used to ease the task of setting some important
parameter attributes. These can also be used on a per-component basis, by calling them
on individual components.

* :py:meth:`~.model.BaseModel.set_parameters_not_free`
* :py:meth:`~.model.BaseModel.set_parameters_free`
* :py:meth:`~.model.BaseModel.set_parameters_value`


.. _ModelFitBigData-label:

Fitting big data
----------------
See the section in :ref:`signal.binned` working with big data.

.. _SAMFire-label:

Smart Adaptive Multi-dimensional Fitting (SAMFire)
--------------------------------------------------

SAMFire (Smart Adaptive Multi-dimensional Fitting) is an algorithm created to
reduce the starting value (or local / false minima) problem, which often arises
when fitting multi-dimensional datasets.

The algorithm will be described in full when accompanying paper is published,
but we are making the implementation available now, with additional details
available in the following `conference proceeding
<https://onlinelibrary.wiley.com/doi/10.1002/9783527808465.EMC2016.6233>`_.

The idea
^^^^^^^^

The main idea of SAMFire is to change two things compared to the traditional
way of fitting datasets with many dimensions in the navigation space:

 #. Pick a more sensible pixel fitting order.
 #. Calculate the pixel starting parameters from already fitted parts of the
    dataset.

Both of these aspects are linked one to another and are represented by two
different strategy families that SAMFfire uses while operating.

Strategies
^^^^^^^^^^

During operation SAMFire uses a list of strategies to determine how to select
the next pixel and estimate its starting parameters. Only one strategy is used
at a time. Next strategy is chosen when no new pixels can be fitted with
the current strategy. Once either the strategy list is exhausted or the full
dataset fitted, the algorithm terminates.

There are two families of strategies. In each family there may be many
strategies, using different statistical or significance measures.

As a rule of thumb, the first strategy in the list should always be from the
local family, followed by a strategy from the global family.

Local strategy family
^^^^^^^^^^^^^^^^^^^^^

These strategies assume that locally neighbouring pixels are similar. As a
result, the pixel fitting order seems to follow data-suggested order, and the
starting values are computed from the surrounding already fitted pixels.

More information about the exact procedure will be available once the
accompanying paper is published.


Global strategy family
^^^^^^^^^^^^^^^^^^^^^^

Global strategies assume that the navigation coordinates of each pixel bear no
relation to it's signal (i.e. the location of pixels is meaningless). As a
result, the pixels are selected at random to ensure uniform sampling of the
navigation space.

A number of candidate starting values are computed form global statistical
measures. These values are all attempted in order until a satisfactory result
is found (not necessarily testing all available starting guesses). As a result,
on average each pixel requires significantly more computations when compared to
a local strategy.

More information about the exact procedure will be available once the
accompanying paper is published.

Seed points
^^^^^^^^^^^

Due to the strategies using already fitted pixels to estimate the starting
values, at least one pixel has to be fitted beforehand by the user.

The seed pixel(s) should be selected to require the most complex model present
in the dataset, however in-built goodness of fit checks ensure that only
sufficiently well fitted values are allowed to propagate.

If the dataset consists of regions (in the navigation space) of highly
dissimilar pixels, often called "domain structures", at least one seed pixel
should be given for each unique region.

If the starting pixels were not optimal, only part of the dataset will be
fitted. In such cases it is best to allow the algorithm terminate, then provide
new (better) seed pixels by hand, and restart SAMFire. It will use the
new seed together with the already computed parts of the data.

Usage
^^^^^

After creating a model and fitting suitable seed pixels, to fit the rest of
the multi-dimensional dataset using SAMFire we must create a SAMFire instance
as follows:

.. code-block:: python

    >>> samf = m.create_samfire(workers=None, ipyparallel=False)

By default SAMFire will look for an `ipyparallel
<https://ipyparallel.readthedocs.io/>`_ cluster for the
workers for around 30 seconds. If none is available, it will use
multiprocessing instead.  However, if you are not planning to use ipyparallel,
it's recommended specify it explicitly via the ``ipyparallel=False`` argument,
to use the fall-back option of `multiprocessing`.

By default a new SAMFire object already has two (and currently only) strategies
added to its ``strategies`` list:

.. code-block:: python

    >>> samf.strategies
      A |    # | Strategy
     -- | ---- | -------------------------
      x |    0 | Reduced chi squared strategy
        |    1 | Histogram global strategy

The currently active strategy is marked by an 'x' in the first column.

If a new datapoint (i.e. pixel) is added manually, the "database" of the
currently active strategy has to be refreshed using the
:py:meth:`~.samfire.Samfire.refresh_database` call.

The current strategy "database" can be plotted using the
:py:meth:`~.samfire.Samfire.plot` method.

Whilst SAMFire is running, each pixel is checked by a ``goodness_test``,
which is by default
:py:class:`~.samfire_utils.goodness_of_fit_tests.red_chisq.red_chisq_test`,
checking the reduced chi-squared to be in the bounds of [0, 2].

This tolerance can (and most likely should!) be changed appropriately for the
data as follows:

.. code-block:: python

    >>> samf.metadata.goodness_test.tolerance = 0.3 # use a sensible value

The SAMFire managed multi-dimensional fit can be started using the
:py:meth:`~.samfire.Samfire.start` method. All keyword arguments are passed to
the underlying (i.e. usual) :py:meth:`~.model.BaseModel.fit` call:

.. code-block:: python

    >>> samf.start(optimizer='lm', bounded=True)