hyperspy._components.gaussianhf module
- class hyperspy._components.gaussianhf.GaussianHF(height=1.0, fwhm=1.0, centre=0.0, module='numexpr', **kwargs)
Bases:
ExpressionNormalized gaussian function component, with a
fwhmparameter instead of thesigmaparameter, and aheightparameter instead of the area parameterA(scaling difference of \(\sigma \sqrt{\left(2\pi\right)}\)). This makes the parameter vs. peak maximum independent of \(\sigma\), and thereby makes locking of the parameter more viable. As long as there is no binning, the height parameter corresponds directly to the peak maximum, if not, the value is scaled by a linear constant (signal_axis.scale).\[f(x) = h\cdot\exp{\left[-\frac{4 \log{2} \left(x-c\right)^{2}}{W^{2}}\right]}\]Variable
Parameter
\(h\)
height
\(W\)
fwhm
\(c\)
centre
- Parameters:
height (float) – The height of the peak. If there is no binning, this corresponds directly to the maximum, otherwise the maximum divided by signal_axis.scale
fwhm (float) – The full width half maximum value, i.e. the width of the gaussian at half the value of gaussian peak (at centre).
centre (float) – Location of the gaussian maximum, also the mean position.
**kwargs – Extra keyword arguments are passed to the
Expressioncomponent.
- A
Convenience attribute to get, set the area and defined for compatibility with Gaussian component.
- Type:
- sigma
Convenience attribute to get, set the width and defined for compatibility with Gaussian component.
- Type:
See also
- estimate_parameters(signal, x1, x2, only_current=False)
Estimate the gaussian by calculating the momenta.
- Parameters:
- Return type:
Notes
Adapted from https://scipy-cookbook.readthedocs.io/items/FittingData.html
Examples
>>> g = hs.model.components1D.GaussianHF() >>> x = np.arange(-10, 10, 0.01) >>> data = np.zeros((32, 32, 2000)) >>> data[:] = g.function(x).reshape((1, 1, 2000)) >>> s = hs.signals.Signal1D(data) >>> s.axes_manager[-1].offset = -10 >>> s.axes_manager[-1].scale = 0.01 >>> g.estimate_parameters(s, -10, 10, False)
- integral_as_signal()
Utility function to get gaussian integral as Signal1D