ComplexSignal2D
#
- class hyperspy.api.signals.ComplexSignal2D(*args, **kw)#
Bases:
ComplexSignal
,CommonSignal2D
Signal class for complex 2-dimensional data.
Create a signal instance.
- Parameters:
- data
numpy.ndarray
The signal data. It can be an array of any dimensions.
- axes[dict/axes], optional
List of either dictionaries or axes objects to define the axes (see the documentation of the
AxesManager
class for more details).- attributes
dict
, optional A dictionary whose items are stored as attributes.
- metadata
dict
, optional A dictionary containing a set of parameters that will to stores in the
metadata
attribute. Some parameters might be mandatory in some cases.- original_metadata
dict
, optional A dictionary containing a set of parameters that will to stores in the
original_metadata
attribute. It typically contains all the parameters that has been imported from the original data file.- raggedbool or
None
, optional Define whether the signal is ragged or not. Overwrite the
ragged
value in theattributes
dictionary. If None, it does nothing. Default is None.
- data
- add_phase_ramp(ramp_x, ramp_y, offset=0)#
Add a linear phase ramp to the wave.
- Parameters:
- ramp_x: float
Slope of the ramp in x-direction.
- ramp_y: float
Slope of the ramp in y-direction.
- offset: float, optional
Offset of the ramp at the fulcrum.
- Notes
- —–
- The fulcrum of the linear ramp is at the origin and the slopes are
- given in units of the axis with the corresponding scale taken into
- account. Both are available via the
- :attr:`~hyperspy.api.signals.BaseSignal.axes_manager`.
- plot(power_spectrum=False, fft_shift=False, navigator='auto', plot_markers=True, autoscale='v', norm='auto', vmin=None, vmax=None, gamma=1.0, linthresh=0.01, linscale=0.1, scalebar=True, scalebar_color='white', axes_ticks=None, axes_off=False, axes_manager=None, no_nans=False, colorbar=True, centre_colormap='auto', min_aspect=0.1, **kwargs)#
Plot the signal at the current coordinates.
For multidimensional datasets an optional figure, the “navigator”, with a cursor to navigate that data is raised. In any case it is possible to navigate the data using the sliders. Currently only signals with signal_dimension equal to 0, 1 and 2 can be plotted.
- Parameters:
- power_spectrumbool, default False.
If True, plot the power spectrum instead of the actual signal, if False, plot the real and imaginary parts of the complex signal.
- representation{
'cartesian'
|'polar'
} Determines if the real and imaginary part of the complex data is plotted (
'cartesian'
, default), or if the amplitude and phase should be used ('polar'
).- same_axesbool, default
True
If True (default) plot the real and imaginary parts (or amplitude and phase) in the same figure if the signal is one-dimensional.
- fft_shiftbool, default
False
If True, shift the zero-frequency component. See
numpy.fft.fftshift()
for more details.- navigator
str
,None
, orBaseSignal
(or subclass). - Allowed string values are ``’auto’``, ``’slider’``, and ``’spectrum’``.
If
'auto'
:If
navigation_dimension
> 0, a navigator is provided to explore the data.If
navigation_dimension
is 1 and the signal is an image the navigator is a sum spectrum obtained by integrating over the signal axes (the image).If
navigation_dimension
is 1 and the signal is a spectrum the navigator is an image obtained by stacking all the spectra in the dataset horizontally.If
navigation_dimension
is > 1, the navigator is a sum image obtained by integrating the data over the signal axes.Additionally, if
navigation_dimension
> 2, a window with one slider per axis is raised to navigate the data.For example, if the dataset consists of 3 navigation axes “X”, “Y”, “Z” and one signal axis, “E”, the default navigator will be an image obtained by integrating the data over “E” at the current “Z” index and a window with sliders for the “X”, “Y”, and “Z” axes will be raised. Notice that changing the “Z”-axis index changes the navigator in this case.
For lazy signals, the navigator will be calculated using the
compute_navigator()
method.
If
'slider'
:If
navigation dimension
> 0 a window with one slider per axis is raised to navigate the data.
If
'spectrum'
:If
navigation_dimension
> 0 the navigator is always a spectrum obtained by integrating the data over all other axes.Not supported for lazy signals, the
'auto'
option will be used instead.
If
None
, no navigator will be provided.
Alternatively a
BaseSignal
(or subclass) instance can be provided. The navigation or signal shape must match the navigation shape of the signal to plot or thenavigation_shape
+signal_shape
must be equal to thenavigator_shape
of the current object (for a dynamic navigator). If the signaldtype
is RGB or RGBA this parameter has no effect and the value is always set to'slider'
.- axes_manager
None
orAxesManager
If None, the signal’s
axes_manager
attribute is used.- plot_markersbool, default
True
Plot markers added using s.add_marker(marker, permanent=True). Note, a large number of markers might lead to very slow plotting.
- navigator_kwds
dict
Only for image navigator, additional keyword arguments for
matplotlib.pyplot.imshow()
.- colorbarbool, optional
If true, a colorbar is plotted for non-RGB images.
- autoscale
str
, optional The string must contain any combination of the
'x'
,'y'
and'v'
characters. If'x'
or'y'
are in the string, the corresponding axis limits are set to cover the full range of the data at a given position. If'v'
(for values) is in the string, the contrast of the image will be set automatically according tovmin` and ``vmax
when the data or navigation indices change. Default is'v'
.- norm
str
{"auto"` | ``"linear"
|"power"
|"log"
|"symlog"
} ormatplotlib.colors.Normalize
Set the norm of the image to display. If
"auto"
, a linear scale is used except if whenpower_spectrum=True
in case of complex data type."symlog"
can be used to display negative value on a negative scale - readmatplotlib.colors.SymLogNorm
and thelinthresh
andlinscale
parameter for more details.- vmin, vmax{scalar,
str
}, optional vmin
andvmax
are used to normalise the displayed data. It can be a float or a string. If string, it should be formatted as'xth'
, where'x'
must be an float in the [0, 100] range.'x'
is used to compute the x-th percentile of the data. Seenumpy.percentile()
for more information.- gamma
float
, optional Parameter used in the power-law normalisation when the parameter
norm="power"
. Readmatplotlib.colors.PowerNorm
for more details. Default value is 1.0.- linthresh
float
, optional When used with
norm="symlog"
, define the range within which the plot is linear (to avoid having the plot go to infinity around zero). Default value is 0.01.- linscale
float
, optional This allows the linear range (-linthresh to linthresh) to be stretched relative to the logarithmic range. Its value is the number of powers of base to use for each half of the linear range. See
matplotlib.colors.SymLogNorm
for more details. Defaulf value is 0.1.- scalebarbool, optional
If True and the units and scale of the x and y axes are the same a scale bar is plotted.
- scalebar_color
str
, optional A valid MPL color string; will be used as the scalebar color.
- axes_ticks{
None
, bool}, optional If True, plot the axes ticks. If None axes_ticks are only plotted when the scale bar is not plotted. If False the axes ticks are never plotted.
- axes_offbool, default
False
- no_nansbool, optional
If True, set nans to zero for plotting.
- centre_colormapbool or
"auto"
If True the centre of the color scheme is set to zero. This is specially useful when using diverging color schemes. If “auto” (default), diverging color schemes are automatically centred.
- min_aspect
float
, optional Set the minimum aspect ratio of the image and the figure. To keep the image in the aspect limit the pixels are made rectangular.
- **kwargs
dict
Only when plotting an image: additional (optional) keyword arguments for
matplotlib.pyplot.imshow()
.