hyperspy._components.gaussian module
- class hyperspy._components.gaussian.Gaussian(A=1.0, sigma=1.0, centre=0.0, module='numexpr', **kwargs)
Bases:
Expression
Normalized Gaussian function component.
\[f(x) = \frac{A}{\sigma \sqrt{2\pi}}\exp\left[ -\frac{\left(x-x_0\right)^{2}}{2\sigma^{2}}\right]\]Variable
Parameter
\(A\)
A
\(\sigma\)
sigma
\(x_0\)
centre
- Parameters:
A (float) – Area, equals height scaled by \(\sigma\sqrt{(2\pi)}\).
GaussianHF
implements the Gaussian function with a height parameter corresponding to the peak height.sigma (float) – Scale parameter of the Gaussian distribution.
centre (float) – Location of the Gaussian maximum (peak position).
**kwargs – Extra keyword arguments are passed to the
Expression
component.
See also
- estimate_parameters(signal, x1, x2, only_current=False)
Estimate the Gaussian by calculating the momenta.
- Parameters:
- Return type:
Notes
Adapted from https://scipy-cookbook.readthedocs.io/items/FittingData.html
Examples
>>> g = hs.model.components1D.Gaussian() >>> x = np.arange(-10, 10, 0.01) >>> data = np.zeros((32, 32, 2000)) >>> data[:] = g.function(x).reshape((1, 1, 2000)) >>> s = hs.signals.Signal1D(data) >>> s.axes_manager[-1].offset = -10 >>> s.axes_manager[-1].scale = 0.01 >>> g.estimate_parameters(s, -10, 10, False)